QUANTIFICATION OF DISLOCATION CREEP MICROSTRUCTURES IN QUARTZ: COMPARISON OF NATURAL AND EXPERIMENTAL DEFORMATION

Renée Heilbronner, Basel University, Switzerland

Holger Stünitz, Basel University, Switzerland Michael Stipp, Freiburg University, Germany Jan Tullis, Brown University, U.S.A. Greg Hirth, WHOI, U.S.A.

DEFORMATION

"microstructures are the link between nature and experiment"

EXPERIMENTAL ROCK DEFORMATION

Griggs apparatus, solid medium

axial shearing

SAMPLE ASSEMBLY

Brazil quartz forcing blocks

Black Hills Quartzite

MECHANICAL DATA OF SHEARING EXPERIMENTS

shearing experiments: Black Hills quartzite, dislocations creep

UNDEFFORMED BLACK HILLS QUARTZITE

REGIME 1

REGIME 2

REGIME 3

NATURALLY DEFORMED QUARTZ VEINS

Stavel profile, Tonale Line, Northern Iltaly

BULGING

SUBGRAIN ROTATION

GRAIN BOUNDARY MIGRATION I

GRAIN BOUNDARY MIGRATION II

SCHEMATIC OF THREE REGIMES

lowT GBM dominated - SGR dominated - highT GBM dominated

CORRELATION NATURE - EXPERIMENT

DIAGNOSTIC PROPERTIES

vol% recrystallized

grain shape CPO development

COMPUTER-INTEGRATED POLARIZATION MICROSCOPY

Infrared-sensitive digital camera Infrared-sensitive video camera Rotating polarizer (360°) Microscope table with tilt stage Incandescent light source Condensor with $\lambda/4$ plate Rotating polarizer & lambda plate (360°)

Holder for rotating polarizer and narrowband interference filter (660, 700nm)

CIP = ORIENTATION MAPPING

c-AXIS ORIENTATION IMAGE

types of orientation images

- 1 c-axis orientation image
- 2 misorientation image
- 3 orientation gradient image

PARTIAL TEXTURES

4.98

2.69

3.06

with respect to Heaven

with respect to North

MISORIENTATION IMAGES

East

North

GRAIN BOUNDARY MAPPING

grain boundaries derived from 3 principal misorientation images

GRAIN SIZE ANALYSIS

LAZY GRAIN BOUNDARIES (NIH Image macro) create grain boundary map from principal misorientation images

STRIPSTAR

(Fortran program) calculate 3-D grain size distribution from size distribution of sections

DEVELOPMENT OF CPO (experiments BHQ)

LOW DEFORMATION ($\gamma = 1.5$)

INTERMEDIATE DEFORMATION (γ = 2.5)

INTERMEDIATE DEFORMATION ($\gamma = 4$)

HIGH DEFORMATION ($\gamma = 6$)

domain size

DEVELOPMENT OF MICROFABRIC

 $\gamma = 0$ 1.5 4 6

POLE FIGURE DEVELOPMENT

MISORIENTATION TRACKING

... using 60° cones

 α -quartz

starting material = isotropic

transitional porphyroclast fabric

increasing recrystallization

completely recrystallized

DEVLOPMENT OF CPO WITH DEFORMATION

ANNEALING

1

high def. low def. annealed 2 3

100 µm

W938 regime 3

4.04

2.50

CPO DEVELOPMENT

CONCLUSIONS

- CPO = f (<u>STRAIN</u>, $\Delta \sigma$, T, ϵ , ... etc.)
- domains
- saturation of microstructure
- low T / regime: localization
 high T / regime: penetrative deformation
- annealing does not randomize fabric

experimental = natural rock deformation